तिब्बती पठार पर क्रस्टल विकृतियों की मॉडलिंग के लिए वैज्ञानिकों द्वारा उपयोग की जाने वाली मशीन लर्निंग तकनीकों ने ऐसी गतिविधियों के वेग वैक्टर की भविष्यवाणी करने और प्लेट गतिविधियों के लक्षण का निरूपण बढ़ाने में मदद की है। आमतौर पर, क्रस्टल विरूपण की लगातार निगरानी के लिए निरंतर संचालन संदर्भ स्टेशनों (सीओआरएस) का एक घना नेटवर्क तैयार किया जाता है।

अभियान-मोड जीपीएस सर्वेक्षण का उपयोग अक्सर मौजूदा सीओआरएस नेटवर्क को सघन करने के लिए किया जाता है। लाने-ले जाने (लॉजिस्टिक) की समस्याओं और क्षेत्रीय भौगोलिक महत्व के कारण वांछित स्थान पर स्टेशन स्थापित करना बहुत चुनौतीपूर्ण हो सकता है। इसके अलावा, यह प्रक्रिया महंगी है, और लॉजिस्टिक प्रतिबंधों के कारण डेटा की कमी से क्रस्टल गतिविधि पर अध्ययन अक्सर बाधित होता है। मशीन लर्निंग तकनीक ऐसी स्थितियों में क्रस्टल विरूपण अनुसंधान के लिए जीपीएस साइट वेग की भविष्यवाणी करने में सहायता के रूप में आ सकती है।

वांछित स्थानों पर वेग वैक्टर प्राप्त करने के लिए, भारत सरकार के विज्ञान और प्रौद्योगिकी विभाग (डीएसटी) के तहत स्वायत्त संस्थान वाडिया इंस्टीट्यूट ऑफ हिमालयन जियोलॉजी के वैज्ञानिकों ने क्रस्टल गतिविधि को सटीक रूप से मॉडल करने के लिए सपोर्ट वेक्टर मशीन, डिसीजन ट्री और गॉसियन प्रोसेस रिग्रेशन जैसी मशीन लर्निंग तकनीकों को अपनाया।

वैज्ञानिकों ने तिब्बती पठार और उसके आसपास के क्षेत्रों में स्थित 1,271 स्थायी निरंतर और अभियान-मोड जीपीएस स्टेशनों से डेटा का विश्लेषण किया। उन्होंने मॉडल प्रशिक्षण के लिए 892 स्टेशनों से और परीक्षण के लिए 379 स्टेशनों से डेटा का उपयोग किया।

स्रोत