तापमान, दबाव, विद्युत क्षेत्रों जैसे बाहरी उत्तेजनाओं के तहत कुछ सामग्रियों द्वारा प्रदर्शित विलक्षण धातु-इन्सुलेटर परिवर्तन के पीछे का रहस्य वैज्ञानिकों द्वारा डिकोड हुआ है। इससे सेंसर और एक्ट्यूएटर जैसे कार्यात्मक सामग्रियों और उपकरणों के डिजाइनिंग का मार्ग प्रशस्त हुआ है। सामग्री मुख्य रूप से दो मौलिक इलेक्ट्रॉनिक अवस्थाओं धातु या इन्सुलेटिंग में से एक में मौजूद है। हालांकि, कुछ सामग्रियां बाहरी उत्तेजनाओं जैसे तापमान, दबाव, विद्युत क्षेत्र आदि के तहत इन दो स्थितियों के बीच बदलाव करने की उल्लेखनीय क्षमता प्रदर्शित करती हैं। 1939 में मैग्नेटाइट में इस घटना की प्रारंभिक खोज के बाद से, धातु-इन्सुलेटर चरणों (एमआईटी) के बीच परिवर्तन ने वैज्ञानिकों और इंजीनियरों की अगली पीढ़ियों को आकर्षित करना जारी रखा है। इस क्षेत्र में उनके प्रवेश ने विभिन्न उपकरणों में महत्वपूर्ण वैज्ञानिक अभिज्ञान और अनुप्रयोगों की पेशकश की है और इसे नई सामग्रियों की आवश्यकता में शामिल किया गया है। जो औद्योगिक अनुप्रयोगों के लिए धातु-इन्सुलेटर चरण के परिवर्तन को प्रदर्शित कर सकती है।
क्रोमियम नाइट्राइड (सीआरएन) ऐसी सामग्री का एक उदाहरण है, जिसमें धातु-इन्सुलेटर परिवर्तन को अनिसोट्रोपिक चुंबकीय दबाव से उत्पन्न होने वाले अपरंपरागत बल द्वारा प्रेरित किए जाने का अनुमान है। हालांकि, यह प्रणाली लगभग दो दशकों तक सैद्धांतिक पूर्वानुमान के साथ भी प्रयोगात्मक रूप से असत्यापित रही। एक टीम जवाहरलाल नेहरू सेंटर फॉर एडवांस्ड साइंटिफिक रिसर्च(जेएनसीएएसआर), विज्ञान और प्रौद्योगिकी विभाग (डीएसटी) के एक स्वायत्त संस्थान है। इसकी एक टीम ने प्रयोगात्मक रूप से प्रदर्शित किया है कि चुंबकीय तनाव जो परमाणु स्पिन की विशिष्ट व्यवस्था से उपजा है, यह संरचनात्मक, चुंबकीय और धातु-इन्सुलेटर परिवर्तन को चालित करता है।
प्रोफेसर बिवास साहा के नेतृत्व वाली टीम ने प्रयोगात्मक रूप से सीआरएन में धातु-इन्सुलेटर परिवर्तन के पीछे एक प्रेरक शक्ति के रूप में चुंबकीय तनाव की उपस्थिति का प्रदर्शन किया है और इसके हेरफेर के मार्ग को प्रकाशित किया है।
सीआरएन चुंबकीय तनाव दो नजदीकी सीआर एटम के बीच चुंबकीय विनिमय से सीधे जुड़ी पारस्परिक लंबवत दिशाओं के साथ दो अलग-अलग चुंबकीय विनिमय के बीच परस्पर क्रिया से उभरता है। इस टीम ने एक तकनीक का उपयोग किया जिसमें चुंबकीय विनिमय इंटरैक्शन (एपिटेक्सियल स्ट्रेन इंजीनियरिंग) को ठीक करने के लिए सीआरएन अल्ट्राथिन फिल्मों के भीतर संतुलन परमाणु रिक्ति को बदला गया।
जब संपीड़ित तनाव के अधीन होता है, तो चुंबकीय तनाव बढ़ जाता है, जिसके परिणामस्वरूप बड़े मूल्यों के मुकाबले में ऊंचे तापमान पर धातु-इन्सुलेटर परिवर्तन होता है। इसके विपरीत, जब फिल्म तन्यता के तनाव में होती है, तो चुंबकीय तनाव कम हो जाता है, जिससे थोक मूल्य की तुलना में काफी कम तापमान पर धातु-इन्सुलेटर परिवर्तन होता है।
संरचनात्मक समरूपता भी उच्च तापमान पर सेंधानमक से कम तापमान पर ऑर्थोरोम्बिक में एक साथ बदल जाती है। उनका अवलोकन पत्रिका में प्रकाशित फिजिक्स रेव लेट। सीआरएन के धातु-इन्सुलेटर संक्रमण में चुंबकीय तनाव की महत्वपूर्ण भूमिका की पुष्टि करता है।
धातु-इन्सुलेटर चरण परिवर्तन का नया तंत्र इस बात की बेहतर समझ का सृजन कर सकती है कि सामग्रियों में स्पिन, चार्ज और स्वतंत्रता की जाली श्रेणी कैसे युग्मित होती है और इसके परिणामस्वरूप सामग्री के नए वर्ग भी प्रभावित होंगे जो धातु-इन्सुलेटर चरण परिवर्तन प्रदर्शित करते हैं।